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Abstract

The discovery, isolation, and cultivation of the first diatom-infecting virus less
than two decades ago revealed an enigmatic, ecological interaction that altered
our understanding of diatom ecosystem functioning. Since that discovery, char-
acterization of additional diatom host-virus systems has brought important insight
into unique aspects of these viruses and the biogeochemical consequences of
virus-mediated mortality. Emerging approaches for identifying these pathogens
in natural populations are revealing widespread prevalence and geographic dis-
tribution of diatom viruses and the environmental factors that influence host-virus
interactions. In this chapter, we summarize the existing literature and highlight
the latest research on diatom viruses and the potential of these viruses to impact
one of the most significant groups of phytoplankton on the planet. We conclude
with thoughts for the future generation of diatom viral ecologists.
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Abbreviations

dsDNA Double-stranded DNA
dsRNA Double-stranded RNA
FLDS Fragmented and primer ligated dsRNA sequencing
ICTV International Committee on Taxonomy of Viruses
MPN Most probable number
ORF Open-reading frame
RdRp RNA-dependent RNA polymerase
ssDNA Single-stranded DNA
ssRNA Single-stranded RNA
TEM Transmission electron microscopy
TEP Transparent exopolymers

1 Introduction

The discovery that viruses are the most abundant biological entities in a wide range
of marine and freshwater ecosystems (averaging 107 particles per milliliter of water;
Bergh et al. 1989; Breitbart 2012) has considerably changed our view of the aquatic
microbial food-web (Fuhrman 1999; Wilhelm and Suttle 1999). This seminal dis-
covery has promoted research on these infectious agents and the role they play in
marine environments. As obligatory pathogens, viruses depend on a living host to
replicate. Virions, individual virus particles, consist of nucleic acids surrounded by a
protective protein coat called the capsid. A lipid membrane can be found inside or
outside of the capsid, the latter describing enveloped viruses. Viruses are tradition-
ally classified by genome type (e.g., DNA, RNA, single or double-stranded, circular
or linear, segmented or not), structural features (e.g., the symmetry and size of the
virion, the capsid protein composition, the presence of an envelope), replication
strategy, and host organism. Viral infection involves host recognition, adsorption,
entry, and co-opting host machinery for viral genome replication and virion produc-
tion. Viruses are thus specialized pathogens that act as important drivers of host
population dynamics and evolution, and of ecosystem function globally (Suttle
2007; Breitbart 2012).

The ecological and evolutionary consequences of viral infection depend, in part,
on the virus replication strategy. Through the lytic cycle, viral progeny is released
into the environment via lysis of the host cell. For unicellular organisms, lytic
infection leads to host mortality, altering community structure, and stimulating the
microbial loop through the release of nutrients and organic matter (Suttle 2007;
Brussaard et al. 2008)—a process referred to as the “viral shunt” (Wilhelm and Suttle
1999). In contrast, temperate viruses do not cause immediate host lysis, but rather are
maintained in a latent state called lysogeny (Lwoff 1953; Paul 2008), and can alter
host physiology and metabolism by introducing novel functions such as virulence
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factor production (Waldor and Mekalanos 1996; Sumby and Waldor 2003; Vidgen
et al. 2006) or immunity to infection by related viruses (super-infection; Lwoff 1953,
Zinder 1958, Paul 2008, Blasdel and Abedon 2017). Continuous release or intermit-
tent budding of viral progeny without host lysis can also occur, but the prevalence
and environmental consequence of this mode of chronic infection is not well
documented in aquatic viruses (Thomas et al. 2011; Demory et al. 2017).

The first viruses discovered in the ocean were largely phages—viruses that infect
bacteria—with genomes comprising double-stranded (ds) DNA (reviewed in
Breitbart 2012). Among the first eukaryotic algal viruses discovered were the
Phycodnaviridae—large, dsDNA-containing viruses that infect a wide range of
phytoplankton including chlorophytes, prasinophytes, dinoflagellates, and
haptophytes (reviewed in Brussaard 2004). Advances in high-throughput sequenc-
ing later revealed a novel community of picorna-like viruses—small, single-stranded
(ss) RNA-containing viruses (Culley et al. 2003, 2006) that have since been shown
to include viruses similar to those that infect diatoms and dinoflagellates (Tai et al.
2003; Nagasaki et al. 2004).

Arguably one of the most globally distributed and ecologically successful protist
groups in the ocean, diatoms are major players in silicon (Si) and carbon biogeo-
chemistry, processing over 240 Tmol Si annually (Treguer and De La Rocha 2013)
and contributing ~40% of marine primary production (Nelson et al. 1995) and
carbon export (Falkowski et al. 1998; Smetacek 1999). The relatively recent discov-
ery of diatom-infecting viruses revealed a unique group of marine viruses distinct in
genome structure (ssRNA and ssDNA) and a virion size among the smallest on the
planet (~20 to 40 nm in diameter; Nagasaki et al. 2004, Tomaru et al. 2015b).
Although still in its infancy, our understanding of diatom viruses and the impact of
host-virus interactions on biogeochemical cycling and ecosystem function is
improving with the growing number of observations and experimental studies.

In this chapter, we summarize current knowledge about diatom-infecting viruses,
starting with the discovery, diversity, and phylogeny of these unique viruses. We
then describe the ecology of diatom viruses, including host-virus dynamics, envi-
ronmental factors that influence infection, and the role diatom viruses play in natural
communities. Finally, we discuss future outlooks of this developing frontier in
diatom research, implications of emerging technologies and strategies toward better
integration of diatom viruses in modeling ecosystem function.

2 Discovery, Isolation, and Characterization of Diatom
Host-Virus Systems

2.1 Discovery and Isolation

The first diatom virus was isolated from Ariake Sound (Japan) in 2004 by filtering
surface water through a 0.2 μm pore-size filter and challenging 22 exponentially
growing diatom strains with the resulting filtrate. Following inhibition of algal
growth and multiple rounds of dilution to extinction, a clonal pathogen of the centric
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diatom, Rhizosolenia setigera, was isolated (Nagasaki et al. 2004). Since then, a
number of diatom viruses have been isolated (Tables 1 and 2) from resuspended
sediments or through a range of approaches such as dilution to extinction of filtered
surface seawater, enrichment cultures, or tangential flow filtration (Wilhelm et al.
2010).

2.2 Morphological and Genomic Features

The R. setigera virus was identified as a positive-sense (+) ssRNA-containing virus
and designated RsRNAV. Viral replication occurs within the host cytoplasm where
small (~32 nm in diameter), naked (i.e., non-enveloped) and non-tailed hexagonal
particles, suggestive of icosahedral symmetry, are formed. The linear genome
(~9 kb) of RsRNAV encodes two open reading frames (ORFs; Shirai et al. 2006).
ORF1 is a polyprotein gene encoding for replication proteins, including a helicase
and an RNA-dependent RNA Polymerase (RdRp), a highly conserved sequence
among the Picornavirales (Koonin et al. 1993). ORF2 encodes structural proteins of
the viral capsid (Shirai et al. 2006). Subsequent discovery of other diatom-infecting
+ssRNA viruses revealed similar features with genomes ranging between 8 and
10 kb encoding 2 ORFs, virion replication and assembly in the cytoplasm, and virion
diameters ranging from 22 to 50 nm (Fig. 1, Table 1).

Recently, the capsid structure of an ssRNA virus, CtenRNAV-II, infecting
Chaetoceros tenuissimus was resolved using cryo-electron microscopy (cryo-EM;
Munke et al. 2020). Comparison to other Picornavirales viruses revealed conserved
ancestral structural traits that provide insight into the evolutionary history of this
order, but the presence of structures unique to CtenRNAV-II also leave open
questions about the molecular details of viral infection and host-specificity. As this
is the first diatom virus structure to be determined at near atomic-resolution, resolv-
ing the structure of additional members of this family will likely provide useful
insight into the propagation and transmission of these viruses.

In addition to RNA viruses, a number of single-stranded DNA (ssDNA)-
containing diatom viruses have been isolated and characterized (Table 2). Similar
to ssRNA viruses, ssDNA viruses have small (25–38 nm in diameter), icosahedral
capsids. In contrast, viral replication occurs in the nucleus where rod-shaped
structures have been observed (Fig. 2a). However, these rod-shaped virus-like
particles have never been observed extracellularly even following host lysis and
have thus been hypothesized to represent precursors of mature virions (Eissler et al.
2009). The general genomic structure of diatom ssDNA viruses is a closed, circular,
single-stranded molecule of DNA approximately 5–7 kb and composed of 3–4 ORFs
(Fig. 2b). Two of these ORFs, denoted VP2 and VP3, encode a structural protein of
the viral capsid and replication enzyme, respectively, with the function of the other
ORF(s) unknown. With the exception of CdebDNAV and CsetDNAV (Tomaru et al.
2008; Tomaru et al. 2013b), the genome also contains a ~1 kb, double-stranded
DNA region with unknown function. Intriguingly, diatoms are the only protists
known to be infected by ssDNA viruses (Tomaru et al. 2015a) and thus far, no

716 L. Arsenieff et al.



Ta
b
le

1
L
is
ta
nd

ch
ar
ac
te
ri
st
ic
s
of

ss
R
N
A
di
at
om

ho
st
-v
ir
us

sy
st
em

s

H
os
t

H
os
t

st
ra
in

V
ir
us

O
ri
gi
n

Pa
rt
ic
le

di
am

et
er

(n
m
)

G
en
om

e
si
ze

(n
t)

M
aj
or

pr
ot
ei
ns

(k
D
a)

L
at
en
t

pe
ri
od

(h
)

B
ur
st
si
ze

(i
nf
ec
tio

us
un

its
ce
ll�

1
)

N
C
B
I

A
cc
es
si
on

nu
m
be
r

R
ef
er
en
ce
s

C
en
tr
ic

C
ha

et
oc
er
os

sp
.

S
S
08

-
C
03

C
sp
03

R
N
A
V

Y
at
su
sh
ir
o

S
ea
,J
ap
an

32
94

17
42

.0
,

34
.0
,

28
.0

<
48

–
A
B
63

90
40

T
om

ar
u

et
al
.

(2
01

3a
)

C
ha

et
oc
er
os

so
ci
al
is

f.
ra
di
an
s

L
-4

C
sf
rR
N
A
V

H
ir
os
hi
m
a

B
ay
,J
ap
an

22
94

67
32

.0
,

28
.5
,

25
.0

<
48

66
A
B
46

98
74

T
om

ar
u

et
al
.

(2
00

9)

C
ha

et
oc
er
os

te
nu
is
si
m
us

2–
10

C
te
nR

N
A
V

ty
pe
-I

A
ri
ak
e

so
un
d,

Ja
pa
n

31
94

31
33

.5
,

31
.5
,

30
.0

<
24

1.
0
�

10
4

A
B
37

54
7

S
hi
ra
i

et
al
.

(2
00

8)

C
ha

et
oc
er
os

te
nu
is
si
m
us

2–
10

C
te
nR

N
A
V

ty
pe
-I
I

H
ir
os
hi
m
a

B
ay
,J
ap
an

35
95

62
32

.2
,

29
.0
,

26
.1

24
–
28

13
6

A
B
97
16
61

K
im

ur
a

an
d

T
om

ar
u

(2
01

5)

G
ui
na

rd
ia

de
lic
at
ul
a

R
C
C
30
83

G
de
lR
N
A
V

W
es
te
rn

E
ng

lis
h

C
ha
nn

el
,

F
ra
nc
e

35
92

33
38

.6
,

33
.9
,

29
.8
,

27
,6

.8

<
12

9.
34

x
10

4
M
H
70
67
68

A
rs
en
ie
ff

et
al
.

(2
01

9)

R
hi
zo
so
le
ni
a

se
tig

er
a

S
3

R
sR

N
A
V

A
ri
ak
e

so
un
d,

Ja
pa
n

32
88

47
41

.5
,

41
.0
,

29
.5

48
31
00

A
B
24
32
97

N
ag
as
ak
i

et
al
.

(2
00

4)

Sk
el
et
on
em

a
co
st
at
um

M
E
-

S
C
M
-1

S
co
sV

a
Ja
ra
n
B
ay
,

K
or
ea

45
–
50

–
–

<
48

90
–
25

0
–

K
im

et
al
.

(2
01

5a
)

St
ep
ha

no
py
xi
s

pa
lm
er
ia
na

N
F
-D

-
S
P
A
-1

S
pa
lV

a
Ja
ra
n
B
ay
,

K
or
ea

25
–
30

–
–

<
80

92
–

K
im

et
al
.

(2
01

5b
)

T
ha
la
ss
io
si
ra

gr
av
id
a

IT
D
ia
-1

T
gr
aR

N
A
V

Y
at
su
sh
ir
o

S
ea
,J
ap
an

32
~
90

00
b

–
–

–
L
C
01
34

77
T
om

ar
u

et
al
.

(2
01

5b
)

(c
on

tin
ue
d)

Diatom Viruses 717



Ta
b
le

1
(c
on

tin
ue
d)

H
os
t

H
os
t

st
ra
in

V
ir
us

O
ri
gi
n

Pa
rt
ic
le

di
am

et
er

(n
m
)

G
en
om

e
si
ze

(n
t)

M
aj
or

pr
ot
ei
ns

(k
D
a)

L
at
en
t

pe
ri
od

(h
)

B
ur
st
si
ze

(i
nf
ec
tio

us
un

its
ce
ll�

1
)

N
C
B
I

A
cc
es
si
on

nu
m
be
r

R
ef
er
en
ce
s

T
ha
la
ss
io
si
ra

sp
.

–
T
ha
lR
N
A
V
01

K
an
e’
oh

e
ba
y,
H
aw

ai
i

31
–
34

89
51

–
–

–
–

S
ch
va
rc
z

(2
01

9)

P
en
na
te

A
m
ph

ip
ro
ra

pa
lu
do
sa

–
A
pa
IV

K
an
e’
oh

e
ba
y,
H
aw

ai
i

36
–
39

51
72

–
–

–
–

S
ch
va
rc
z

(2
01

9)

A
st
er
io
ne
llo

ps
is

gl
ac
ia
lis

IT
09

-K
25

A
gl
aR

N
A
V

A
go

B
ay
,

Ja
pa
n

31
88

42
–

–
–

A
B
97

39
45

T
om

ar
u

et
al
.

(2
01

2)

C
yl
in
dr
ot
he
ca

cl
os
te
ri
um

–
C
C
lo
R
N
A
V
03

K
an
e’
oh

e
ba
y,
H
aw

ai
i

29
–
32

87
78

–
–

–
–

S
ch
va
rc
z

(2
01

9)

N
itz
sc
hi
a

re
ve
rs
a

K
T
30

N
itR

ev
R
N
A
V

T
ok

yo
B
ay
,

Ja
pa
n

30
~
90

00
b

36
,

32
,3

0,
28

–
–

L
C
46
68

44
-

L
C
46
68

47
T
oy

od
a

et
al
.

(2
01

9)

L
at
en
tp
er
io
d
(t
he

tim
e
un

til
th
e
ap
pe
ar
an
ce

of
ex
tr
ac
el
lu
la
rv

ir
us
)a
nd

bu
rs
ts
iz
e
ar
e
re
po

rt
ed

fo
rb

at
ch

cu
ltu

re
in
re
pl
et
e
m
ed
iu
m
.D

as
he
s
in
di
ca
te
pa
ra
m
et
er
s
th
at

w
er
e
no

t
re
po

rt
ed

a N
ot

fu
lly

de
sc
ri
be
d,

bu
th

av
e
fe
at
ur
es

si
m
ila
r
to

th
os
e
of

ot
he
r
di
at
om

ss
R
N
A

vi
ru
se
s
an
d
ar
e
pr
es
um

ed
to

be
lo
ng

to
th
is
gr
ou

p
b
G
en
om

e
no

tf
ul
ly

se
qu

en
ce
d

718 L. Arsenieff et al.



Ta
b
le

2
L
is
ta
nd

ch
ar
ac
te
ri
st
ic
s
of

ss
D
N
A

di
at
om

ho
st
-v
ir
us

sy
st
em

s

H
os
t

H
os
t
st
ra
in

V
ir
us

O
ri
gi
n

Pa
rt
ic
le

di
am

et
er

(n
m
)

G
en
om

e
si
ze

(n
t)

M
aj
or

pr
ot
ei
ns

(k
D
a)

L
at
en
t

pe
ri
od

(h
)

B
ur
st
si
ze

(i
nf
ec
tio

us
un

its
ce
ll�

1
)

N
C
B
I

A
cc
es
si
on

nu
m
be
r

R
ef
er
en
ce
s

C
en
tr
ic

C
ha

et
oc
er
os

de
bi
lis

02
08

10
A
04

C
h4

8
C
de
bD

N
A
V

A
ri
ak
e

so
un

d,
Ja
pa
n

32
~
70

00
b

37
.5
,4

1
12
–
24

55
A
B
50

43
76

T
om

ar
u

et
al
.

(2
00

8)

C
ha

et
oc
er
os

cf
.g

ra
ci
lis

–
C
sp
N
IV

a
C
he
sa
pe
ak
e

B
ay
,U

S
A

25
–

–
<
24

–
–

B
et
ta
re
l

et
al
.

(2
00

5)

C
ha

et
oc
er
os

lo
re
nz
ia
nu

s
IT
-D

ia
51

C
lo
rD

N
A
V

H
ir
os
ho
m
a

B
ay
,J
ap
an

34
58

13
<
22

5
48

2.
2
�

10
4

A
B
55

35
81

T
om

ar
u

et
al
.

(2
01

1c
)

C
ha

et
oc
er
os

sa
ls
ug
in
eu
m

C
h4

2
C
sa
lD
N
A
V

A
ri
ak
e

so
un

d,
Ja
pa
n

38
60

00
43

.5
,4

6
12
–
24

32
5

A
B
19
33
15

N
ag
as
ak
i

et
al
.

(2
00

5)

C
ha

et
oc
er
os

se
to
en
si
s

IT
07
-C
11

C
se
tD
N
A
V

H
ir
os
ho
m
a

B
ay
,J
ap
an

33
58

36
31

,3
7

48
2.
0
�

10
4

A
B
78

10
89

T
om

ar
u

et
al
.

(2
01

3b
)

C
ha

et
oc
er
os

sp
.

T
G
07

-C
28

C
sp
05

D
N
A
V

A
go

B
ay
,

Ja
pa
n

33
57

85
40

,7
5

<
24

–
A
B
64

73
34

T
oy

od
a

et
al
.

(2
01

2)

C
ha

et
oc
er
os

sp
.

S
S
62

8–
11

C
sp
07

D
N
A
V

H
ir
os
ho
m
a

B
ay
,J
ap
an

34
55

52
38

.5
<
12

29
A
B
84
42
72

K
im

ur
a

an
d

T
om

ar
u

(2
01

3)

C
ha

et
oc
er
os

sp
.

–
C
sp
D
N
A
V
-

K
B
01

K
an
e’
oh

e
ba
y,

H
aw

ai
i

26
–
31

59
03

–
–

–
–

S
ch
va
rc
z

(2
01

9)

C
ha

et
oc
er
os

sp
.

–
C
sp
D
N
A
V
-

K
B
02

K
an
e’
oh

e
ba
y,

H
aw

ai
i

32
–
36

56
89

–
–

–
–

S
ch
va
rc
z

(2
01

9)

(c
on

tin
ue
d)

Diatom Viruses 719



Ta
b
le

2
(c
on

tin
ue
d)

H
os
t

H
os
t
st
ra
in

V
ir
us

O
ri
gi
n

Pa
rt
ic
le

di
am

et
er

(n
m
)

G
en
om

e
si
ze

(n
t)

M
aj
or

pr
ot
ei
ns

(k
D
a)

L
at
en
t

pe
ri
od

(h
)

B
ur
st
si
ze

(i
nf
ec
tio

us
un

its
ce
ll�

1
)

N
C
B
I

A
cc
es
si
on

nu
m
be
r

R
ef
er
en
ce
s

C
ha

et
oc
er
os

te
nu
is
si
m
us

2–
6

C
te
nD

N
A
V

ty
pe
-I

A
ri
ak
e

so
un

d,
Ja
pa
n

37
56

39
38

.5
96

32
0

A
B
59

79
49

T
om

ar
u

et
al
.

(2
01

1b
)

C
ha

et
oc
er
os

te
nu
is
si
m
us

2–
10

C
te
nD

N
A
V

ty
pe
-I
I

H
ir
os
ho
m
a

B
ay
,J
ap
an

37
55

70
39

<
24

17
37

A
B
97
16
58

K
im

ur
a

an
d

T
om

ar
u

(2
01

5)

C
ha

et
oc
er
os

cf
.w

ig
ha

m
ii

–
C
w
N
IV

a
C
he
sa
pe
ak
e

B
ay
,U

S
A

30
–

–
8

2.
6
�

10
4

–
E
is
sl
er

et
al
.

(2
00

9)

P
en
na
te

T
ha
la
ss
io
ne
m
a

ni
tz
sc
hi
oi
de
s

A
R
-T
N
01

T
ni
tD
N
A
V

A
ri
ak
e

so
un

d,
Ja
pa
n

35
55

73
–

–
–

A
B
78

12
84

T
om

ar
u

et
al
.

(2
01

2)

H
al
se
a

os
tr
ea
ri
a

N
C
C
14
8.
78

N
C
C
23
5.
1

H
O
V
-1
48

H
O
V
-2
35

B
ay

of
B
ou

rg
ne
uf
,

F
ra
nc
e

–
45

67
45

38
–

–
–

–
G
as
tin

ea
u

et
al
.

(2
02

0)

L
at
en
t
pe
ri
od

(t
he

tim
e
un

til
th
e
ap
pe
ar
an
ce

of
ex
tr
ac
el
lu
la
r
vi
ru
s)

an
d
bu

rs
t
si
ze

ar
e
re
po

rt
ed

fo
r
ba
tc
h
cu
ltu

re
s
gr
ow

n
in

re
pl
et
e
m
ed
iu
m
.
D
as
he
s
in
di
ca
te

pa
ra
m
et
er
s
th
at
w
er
e
no

t
re
po

rt
ed

a N
ot

fu
lly

de
sc
ri
be
d,

bu
th

av
e
fe
at
ur
es

si
m
ila
r
to

th
os
e
of

ot
he
r
di
at
om

ss
D
N
A

vi
ru
se
s
an
d
ar
e
pr
es
um

ed
to

be
lo
ng

to
th
is
gr
ou

p
b
G
en
om

e
no

tf
ul
ly

se
qu

en
ce
d

720 L. Arsenieff et al.



dsDNA viruses—the vast majority of known algal viruses that infect haptophytes,
chlorophytes, and cyanobacteria (Coy et al. 2018)—have been reported to infect
diatoms.

The majority of isolated diatom viruses infect centric diatom species, largely
those within the genus Chaetoceros, perhaps not surprisingly, as this is one of the
most globally distributed and diverse genera in the ocean, with approximately
400 species described (De Luca et al. 2019). Members of this genus are infected
by either DNA or RNA viruses. However, in some species, both types of viruses can
proliferate, as has been documented in C. tenuissimus (Kimura and Tomaru 2015).
Viruses that infect centric diatoms in other genera such as Guinardia, Minidiscus,
Skeletonema, and Thalassiosira have also been isolated (Tables 1 and 2; Arsenieff
et al. 2020). Fewer viruses that infect pennate diatoms have been identified, with
those infecting species in the genera Amphiphora, Asterionellopsis, Cylindrotheca,
Haslea, Nitzschia, and Thalassionema (Tables 1 and 2). Given that the overwhelm-
ing majority of diatom viruses have been isolated from Japan, there is likely still
considerable viral diversity that remains to be discovered.

2.3 Phylogeny

Over the past few years, the increasing number of diatom viral isolates have enabled
more robust phylogenetic comparisons, clustering ssRNA and ssDNA viruses
among two defined taxonomic groups. Based on the conserved phylogenetic marker,
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Fig. 1 General structure and
genome organization of
diatom ssRNA viruses. (a)
Transmission electron
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stained CtenRNAV. Scale bar
¼ 100 nm. (E. Yukabovskaya
and K. Thamatrakoln,
unpublished). (b) Genome
structure of RsRNAV,
representative of diatom
ssRNA viruses. (Reproduced
with permission from Tomaru
et al. [2015a])
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RdRp, diatom ssRNA viruses belong to a monophyletic group that falls within the
order Picornavirales and the familyMarnaviridae (Fig. 3a; International Committee
on Taxonomy of Viruses, ICTV, Lefkowitz et al. 2018), which includes a diverse
range of cultured and uncultured marine ssRNA viruses. Seven genera comprise this
family, three of which (Bacillarnavirus, Kusarnavirus, and Sogarnavirus) encom-
pass known diatom viruses (Vlok et al. 2019). Species within these genera are further
defined by amino acid similarity within the capsid protein.

For ssDNA viruses, the genus Bacilladnavirus was first proposed to encompass
all of the diatom ssDNA viruses (ICTV; Tomaru et al. 2011b). However, this has
since been revised and these viruses now reside within the family Bacilladnaviridae
(Fig. 3b), which includes ssDNA viruses that infect marine mollusks (Kazlauskas
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aFig. 2 General structure and
genome organization of
diatom ssDNA viruses. (a)
Electron micrograph of
intracellular Csp05DNAV.
Reproduced with permission
from Toyoda et al. (2012).
Arrows indicate the
rod-shaped form of the viral
particle in the host nucleus.
(b) A typical genome
structure. (Reproduced with
permission from Tomaru et al.
[2015a])
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Fig. 3 Maximum likelihood phylogenetic trees of (a) ssRNA viruses constructed based on the
amino acid sequence of RdRp and (b) ssDNA viruses constructed based on the amino acid
sequences of replication-related proteins. Bootstrap values (%) from 1000 replications are shown.
Scale bar indicate the number of substitutions per site. Full names of viruses are listed in Tables 1
and 2. (K. Kimura, unpublished)
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et al. 2017). Within this family, Chaetoceros-infecting viruses were split into two
newly proposed genera, Diatodnavirus and Protobacilladnavirus, based on
conserved motifs in the replication protein (King et al. 2018). Interestingly, the
capsid proteins of ssDNA viruses were found to be homologous to those of ssRNA
viruses from the family Nodaviridae which infect insects and fish, suggesting a
horizontal gene transfer between these two viral types (Kazlauskas et al. 2017). This
hypothesis may be resolved with genome sequencing of additional diatom viruses
that will allow comparisons with viruses of other marine organisms.

3 Diatom Host-Virus Interactions

3.1 Characteristics of Diatom Viral Infection

Infection Dynamics. All of the diatom viruses described thus far are lytic, causing
host mortality within 2–10 days of inoculation. Generally, this coincides with the
maximum release of infectious virions (Fig. 4), but in some systems, viral production
can occur prior to host lysis (see Sect. 3.2). Impacts on host photophysiology,
measured by a decrease in the maximum photochemical yield of photosystem II,
have also been detected prior to host lysis, suggesting a potential impact of infection
on photosynthesis and carbon fixation (Kranzler et al. 2019) that warrants further
investigation.

Host Range. As commonly observed in other microalgal viruses, diatom viruses
appear to be extremely limited in their host range, with most viruses capable of
infecting only a single species, and in some cases, a single strain (Tomaru et al.
2011b). One exception found thus far is the ssRNA virus, CtenRNAV type-II, which
can infect several different Chaetoceros species (Kimura and Tomaru 2015), raising
intriguing questions about the mechanisms that determine host susceptibility and
resistance.

Aggregation and Spore Formation. In aquatic systems, viruses have been
historically considered to act as “shunts”, diverting energy away from higher trophic
levels and back into the microbial loop (Wilhelm and Suttle 1999). However, recent
evidence suggests virus may also “shuttle” carbon into the mesopelagic and deep
ocean by stimulating processes that facilitate sinking (Lønborg et al. 2013; Guidi
et al. 2016; Laber et al. 2018; Nissimov et al. 2018). These processes include the
formation of large, ballasted particle aggregates—mediated by the production of
polysaccharidic, transparent exopolymers (TEP)—and the induction of heavily
silicified spore formation, both of which have been implicated in massive carbon
export events in the ocean (Alldredge et al. 1995; Rynearson et al. 2013). Aggrega-
tion has been observed in infected C. socialis and C. tenuissimus cultures (Tomaru
et al. 2009; Yamada et al. 2018); however, in the latter, this was mediated by
proteinaceous, Coomassie-stainable particles, rather than TEP (Yamada et al.
2018). Viral infection of C. socialis also induces spore formation (Tomaru et al.
2009; Pelusi et al. 2020) that appears to serve as a defense mechanism, as spores
produced during infection are unable to propagate the infection upon germination
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(Pelusi et al. 2020). Taken together, these findings highlight the potential for viruses
to influence both the life cycle of diatoms and the fate of diatom organic matter in the
ocean.

Viral Production. The release of viruses from the host through budding or lysis
is critical for viral propagation, and quantifying the abundance of viruses is neces-
sary for understanding the ecological significance of viral infection. A major hin-
drance toward this goal has been our inability to rapidly and reliably enumerate these
viruses in culture or natural populations. The genomic make-up (i.e., ssRNA and
ssDNA) and small size of diatom viruses preclude quantifying viral abundance using
high-throughput methods that employ dsDNA-specific fluorescent dyes combined
with microscopy or flow cytometry (Tomaru and Nagasaki 2007). Thus, classical
methods of viral enumeration, such as plaque assays or most probable number assays
(MPN) are employed (Suttle 1993). Although both of these methods are rather easy
to implement, they are time-consuming, dependent on host susceptibility, and prone
to high variability and underestimation due to factors such as aggregation. They are,

Fig. 4 Representative host-virus infection dynamics. (a) Host abundance in control, uninfected
(open squares) and infected cultures (black squares) of C. tenuissiumus (b) viral abundance in
infected cultures. (Reproduced with permission from Tomaru et al. [2011b])
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however, advantageous because they provide the number of infectious particles,
unlike fluorescent dyes and flow cytometry, which only give estimates of total viral
abundance without accounting for infectivity. Using MPN assays in culture studies,
diatom virus burst size (i.e., the number of viruses produced by a single host cell,
calculated by dividing the number of infectious units by the number of dead host
cells), ranges from 101 to 105 infectious units per host cell (Tables 1 and 2), the upper
end of this range being among the highest reported burst sizes of any algal virus.

Prevalence of Infection. Determining the fraction of a population that is infected
at any given time is a critical aspect of understanding not only how viruses are
propagated and transmitted, but also the role viruses play in regulating bloom
dynamics. One study using TEM image analysis of infected C. cf. wighamii found
that only 20% of the culture was infected just prior to host lysis, suggesting that even
within a clonal culture, there is unexplained variability in host susceptibility (Eissler
et al. 2009). Adopting methods from other host-virus systems, such as fluorescence
in situ hybridization (Robertson and Thach 2009; Castillo et al. 2020), iPolony, a
solid-phase polony-based PCR approach (Mruwat et al. 2021), or single-cell viral
sequencing (Zanini et al. 2018; Ku et al. 2020) will be instrumental in quantifying
the proportion of infected cells within a diatom population and providing a more
fundamental understanding of host-virus interactions.

3.2 Factors Impacting Host-Virus Interactions

With the availability of emerging model diatom host-virus systems, we are now
starting to identify biotic and abiotic factors that influence infection dynamics and
understand the ecological significance and biogeochemical consequence of diatom
host-virus interactions in natural populations.

Host Physiology. Numerous studies suggest host growth phase and physiology
influence infection dynamics and viral production, irrespective of viral genome type
(i.e., ssDNA or ssRNA). In semi-continuous grown cultures, viral-induced host
mortality by CtenDNAV-II or CtenRNAV-II was inversely correlated to
C. tenuissimus growth rate (Tomaru et al. 2021). For some diatoms, host lysis and
mortality appear to only occur once cultures reach late logarithmic or stationary
phase (in some cases up to nine days post-infection), even when cultures are infected
during early exponential growth. However, viral progeny can be detected extracel-
lularly as early as 1–3 days post-infection and prior to host lysis (Fig. 4; Shirai et al.
2008, Tomaru et al. 2014, Kimura and Tomaru 2015). In contrast, when these same
species are infected in stationary phase, host lysis is more rapid, occurring within
1–3 days. Intriguingly, the final viral titer between cultures infected during logarith-
mic or stationary phase does not significantly differ indicating the longer time to
lysis does not result in increased viral production. The underlying cellular mecha-
nism(s) driving this variability remains to be determined; however, there is a well-
documented interplay between viruses and host cell cycle in other systems, whereby
hosts in specific phases of the cycle are more susceptible to infection (Davy and
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Doorbar 2007; Bagga and Bouchard 2014). Characterizing viral infection in
synchronized cultures of diatoms would provide insight into this possibility.

Host lysis is not restricted to stationary phase in all diatom host-virus systems. For
example, infection of Skeletonema costatum (Kim et al. 2015a) and Stephanopyxis
palmeriana (Kim et al. 2015b) caused host lysis during exponential phase, concom-
itant with the appearance of high extracellular virus abundance. Infection of
Guinardia delicatula by GdelRNAV also caused host lysis three days post-infection
when cultures were still growing exponentially; however, an order of magnitude
increase in extracellular viruses could be detected within 12 hours of infection
(Arsenieff et al. 2019). These dynamics of host mortality and early viral production
have also been observed in C. debilis (Tomaru et al. 2008), C. setoenis (Tomaru et al.
2013b) and C. cf. wighamii (Eissler et al. 2009).

Environmental Factors. In addition to growth phase, host-virus dynamics can
also be toggled by nutrient availability. In the centric, bloom-forming diatom
C. tenuissimus, cultures grown under silicon (Si) limiting conditions experienced
more rapid infection and mortality than cultures infected under replete conditions
(Kranzler et al. 2019). However, similar to cultures infected during different growth
phases, the burst size was not significantly different between replete and Si-limited
cultures, suggesting diatom viral replication occurs almost immediately following
entry and that the time to lysis is dictated by other factors, possibly host physiology.
In contrast, in iron-limited C. tenuissimus, viral-induced mortality was delayed and
significantly reduced and despite the longer latent period, viral burst size was lower
when compared to cultures infected under replete conditions (Kranzler et al. 2021).
These nutrient-driven host-virus dynamics were observed when cultures were
infected with either CtenDNAV or CtenRNAV. Intriguingly, in this same system,
temperature has also been found to impact infection dynamics, but in a viral-strain
specific manner (Tomaru et al. 2014). While infection and mortality were accelerated
at higher temperature when cultures of C. tenuissimus were infected with an ssDNA
virus, there was no difference in the dynamics when the same species was infected
with an ssRNA virus, alluding to possible niche differentiation between these two
co-occurring viruses (Tomaru et al. 2014). In subsequent work using different
combinations of C. tenuissimus host and virus strains, both temperature and salinity
significantly impacted the timing of host lysis following infection, with the magni-
tude of the impact dependent on the host-virus combination (Kimura and Tomaru
2017).

Taken together, these findings highlight the importance of host physiology in
viral infection dynamics and raise questions about the mechanism underlying the
response to infection. However, the observed variability also demonstrates there is
still much to learn about the nature of diatom host susceptibility to viral infection. In
a wide range of host-virus systems, including algal hosts, oxidative stress is well-
known to play a role in pathogenesis (Schwarz 1996; Sheyn et al. 2016;
Moniruzzaman et al. 2018) and likely plays a role in diatoms as well (Kranzler
et al. 2021). There may also be a role for the silicified cell wall in defense against
infection. Although this has yet to be empirically established, it has been
hypothesized that the intricate nano- and micro-scaled structures of the frustule
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could serve as a semi-active filter providing a physical barrier to viral infection
(Herringer et al. 2019). This is consistent with observations of increased susceptibil-
ity in both Si-limited diatoms (Kranzler et al. 2019) and stationary phase cultures
(Shirai et al. 2008; Tomaru et al. 2014; Kimura and Tomaru 2015), as diatoms are
well-documented to reduce silicification when Si is limiting (Paasche 1975;
Brzezinski et al. 1990). Thinner frustules may lead to large pores providing easier
access of diatom viruses to the cell membrane.

Biotic Interactions. Little is known about biotic interactions that influence
infection dynamics. To date, only one study has explored bacteria-virus-diatom
interactions and found that axenic cultures of C. tenuissimus were completely
lysed during infection, but when xenic cultures were infected, a host
sub-population survived and showed signs of regrowth (Kimura and Tomaru
2014). From this “resistant” sub-population, the bacterial community was
characterized and clonal isolates of Nautella sp., Polaribacter sp., and. Sulfitobacter
sp. were established. When these bacteria were added back to axenic infected,
cultures of C. tenuissimus, a sub-population of cells were again observed to survive
infection. The mechanism by which diatoms are able to escape viral infection in the
presence of bacteria has not been elucidated, but presents interesting ecosystem
interactions for further exploration.

A recent study reported the discovery of sub-viral agents in cultures of C. debilis
infected with CdebDNAV, suggesting the presence of a co-occurring satellite virus
(Tomaru et al. 2020). Satellite viruses are parasitic viruses of other viruses that hijack
the replication machinery of the co-infecting virus for its own replication, thereby
promoting the survival of the cellular host. This tripartite interaction between host,
virus, and satellite virus, has been observed in other aquatic systems (La Scola et al.
2008), and the further characterization of this potentially similar system in diatoms
will provide intriguing insight into the nature of the diatom host-virus relationship.

4 Diatom Viruses in Natural Populations

4.1 Diatom Viruses in Marine Systems

Even prior to the identification of diatom viruses, shotgun sequencing of amplified
RdRp genes in coastal waters near British Columbia, Canada, revealed the presence
of ssRNA viruses in the ocean (Culley et al. 2003). Phylogenetic analysis revealed
these picorna-like viruses were similar, but distinct from the ssRNA virus known at
the time to infect the bloom-forming dinoflagellate, Heterosigma akashiwo (Tai
et al. 2003). As sequencing technologies improved, metagenomic studies revealed
widespread presence and persistence of RNA viruses, leading to estimates that RNA
viruses could rival, or even outnumber, the more well-characterized dsDNA-
containing viruses in the ocean (Culley et al. 2006, 2014; Culley and Steward
2007; Steward et al. 2013; Gustavsen et al. 2014; Miranda et al. 2016; Vlok et al.
2019). Newly developed methods are now enabling the detection of previously
unknown viruses. Fragmented and loop primer ligated dsRNA sequencing (FLDS)
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is a novel method that efficiently captures RNA viruses by specifically purifying
long dsRNA from living organisms, allowing the identification of both dsRNA
viruses and replicative intermediates of ssRNA viruses. This method revealed the
presence of multiple RNA viruses within diatom communities in a rocky marine
environment (Urayama et al. 2016). Recently, FLDS led to the discovery of a novel
member of non-segmented dsRNA viruses from the family Totiviridae and other
unknown RNA viruses associated with the diatom holobiont,Melosira sp. that differ
from all of the previously discovered diatom viruses (Chiba et al. 2020), suggesting
the diversity of RNA viruses may be even more greatly underestimated than
previously thought.

Few studies have explored the prevalence of ssDNA viruses in the environment,
largely due to methodological limitations. Metagenomic analysis of ssDNA requires
whole genome amplification, such as multiple displacement amplification (Kim and
Bae 2011), which many studies do not employ, thereby largely excluding ssDNA
and preferentially capturing dsDNA. Early studies targeting ssDNA viruses in
metagenomic analyses highlight an unexplored diversity of ssDNA, but were
conducted when few diatom-specific ssDNA virus genome sequences were available
and thus could not be identified (Angly et al. 2006; Labonté and Suttle 2013;
McDaniel et al. 2014). Similar to RNA viruses, ssDNA viruses may comprise a
larger fraction of the DNA viral community than previously known (Labonté and
Suttle 2013). A study on sediments collected from coastal Japan found that 96–100%
of the total DNA viral assemblage comprised ssDNA viruses (Yoshida et al. 2018).
Only one study directly reported the assembly of a full ssDNA virus genome, similar
to the ssDNA virus that infects C. lorenzianus, from a metagenomic study of coastal
waters near Florida (USA; McDaniel et al. 2014). However, as the number of
sequenced diatom viral genomes has increased, so has our ability to detect these
genetic signatures, and a reanalysis of existing datasets (both ssRNA and ssDNA)
could reveal the presence of previously unidentified diatom viruses.

The first study to specifically explore diatom virus dynamics in natural
communities was in 2005 in Chesapeake Bay, USA (Bettarel et al. 2005). To explore
the spatiotemporal dynamics of lytic viral infection, viral concentrates from distinct
regions in the bay were generated by tangential flow filtration throughout the year
and used to inoculate laboratory cultures of C. cf. gracilis. The highest incidence of
lytic infection occurred throughout the bay during late winter-early summer, with no
infection detected late summer through fall, except in a few isolated sites. Using a
similar approach, temporal dynamics of diatom host and virus abundance was
explored in coastal waters near Japan (Tomaru et al. 2011a), where seasonal
variability of lytic viral abundance was also observed. Strain specificity of infection
has also been observed in natural populations. By challenging isolates of Pseudo-
nitzschia from waters collected in Puget Sound, Washington (USA) with viral
concentrates throughout the year, it was found that only 8–16% of isolates could
be infected (Carlson et al. 2016), again highlighting the heterogeneity of permissive
cells within a population.

Advances in sequencing technology and bioinformatic analysis are expanding
our ability to detect infection by these once enigmatic entities. A seminal study using
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metatranscriptomic analysis of eukaryotic communities identified putative host-virus
relationships independent of cultured isolates and demonstrated the applicability of
using cell-associated viruses as an indicator of active viral infection (Fig. 5a;
Moniruzzaman et al. 2017). This approach has proven powerful for characterizing
and diagnosing infection in natural diatom assemblages. In the Northeast Pacific
Ocean, metatranscriptomic analysis of diatom communities revealed reduced virus
diversity and production in iron-limited diatoms, similar to findings in laboratory
cultures (Kranzler et al. 2021). Coupling metatranscriptomic analysis of cell-
associated viruses with targeted quantification of free, extracellular viruses enabled
the diagnosis of different stages of infection in natural diatom assemblages (Fig. 5b)
and revealed enhanced infection of Si limited diatom communities (Kranzler et al.
2019). Taken together, these studies demonstrate that nutrient availability could
drive diatom viral infection and mortality in natural populations.

4.2 Diatom Viruses in Freshwater Systems

Given the ubiquity of diatoms in aquatic environments, we might expect an equally
widespread presence of diverse diatom viruses in rivers and lakes. However, there
has been no reported isolation and cultivation of a freshwater diatom host-virus
system, so our ability to identify freshwater diatom viruses is limited by our ability to
detect them through sequence similarity to marine diatom viruses. Identification of
ssRNA viruses has been reported in a few freshwater systems by sequence analysis
of RdRp genes. In an antarctic lake, viruses with reported similarity to
Bacillarnavirus displayed strong seasonality in abundance, being only present in
summer and not in spring (López-Bueno et al. 2015). Temporal seasonality was also
reported in a temperate lake in the eastern United States where a larger proportion of
potential diatom infecting viruses were found in winter compared to summer
(Djikeng et al. 2009). In the St. Lawrence Estuary (Canada), spatio-variability was
found with distinct diatom viruses occupying discrete salinity regimes (i.e., fresh-
water, brackish, marine) within the estuarine system (Labbé et al. 2018). Identifica-
tion of ssDNA diatom viruses in freshwater systems has been more elusive.
Although few in number, there are studies that have targeted ssDNA viruses in
polar and temperate environments (e.g., López-Bueno et al. 2009; Roux et al. 2012;
Zawar-Reza et al. 2014; Aguirre de Cárcer et al. 2015), but none have directly
identified those with similarity to known diatom ssDNA viruses. However, those
studies suggest freshwater viral communities may be quite unique, with as little as
3% similarity to viral sequences from marine environments (López-Bueno et al.
2009; Roux et al. 2012), highlighting that the absence of freshwater diatom ssDNA
viral genomes may be hindering our ability to identify them in natural populations.
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5 Implications for Ecosystem Function and Biogeochemical
Cycling

Diatom viruses are emerging as widespread and prevalent pathogens with the
potential to significantly impact diatom-mediated primary productivity and
biological pump efficiency (Culley et al. 2003, 2014; Shirai et al. 2006; Culley
and Steward 2007; Steward et al. 2013; Gustavsen et al. 2014; Miranda et al. 2016;
Kranzler et al. 2019; Vlok et al. 2019; Kranzler et al. 2021). By facilitating host lysis,
diatom viruses are a mechanism for the turnover and remineralization of diatom
organic matter and associated elements in the surface ocean. With a global mean
estimate that 58% of diatom silica production (Nelson et al. 1995) is supported by
recycled silicic acid, and in some regions of the ocean up to 100% (Treguer and De
La Rocha 2013), turnover of diatoms by viral infection may represent a heretofore
unappreciated component of diatom-mediated silicon cycling. At the same time,
infection-induced aggregation and spore formation may counter the “viral shunt” by
facilitating sinking and stimulating export through a “viral shuttle”, a biogeochemi-
cal consequence that may be even more accentuated under conditions that delay host
lysis (i.e., exponential growth, temperature, or iron limitation). With the biogenic
silica-based cell wall serving as ballast, diatoms are estimated to contribute ~40% of
carbon export (Jin et al. 2006). However, we still cannot explain the high spatiotem-
poral variability in diatom-mediated export (Tréguer et al. 2018). Viral infection
mediated processes that serve to shunt or shuttle diatom organic matter and
associated elements may be a critical, overlooked component of marine biogeo-
chemical cycling and the diatom-mediated biological pump.

6 Future Outlooks

Given the key role diatoms play in aquatic ecosystems, elucidating how these
populations are regulated by viral pathogens is essential to fully understand the
biogeochemical impact of diatoms and the fate of diatom organic matter. Laboratory
studies on model host-virus systems have revealed a role for biotic and abiotic
interactions in the dynamics of infection, including viral replication and host mor-
tality. Although both are critical for transmission and propagation of viral infection,
the role that diatom viruses play in bloom formation and termination is still being
elucidated. Moreover, the environmental drivers influencing host-virus interactions
are understudied and the degree to which natural diatoms populations are infected
remains largely unknown.

The discovery, isolation, and cultivation of more than 20 distinct diatom host-
virus systems has been a critical step in understanding infection dynamics and the

Fig. 5 (continued) as early infected (C1, blue symbols), actively infected (C2, yellow symbols), and
post-lytic (C3, green symbols) populations in the California Current Ecosystem. (Reproduced with
permission from Kranzler et al. [2019])
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potential ecological and biogeochemical impacts of diatom host-virus interactions.
However, properties of infection such as the latent period, rate of viral production,
viral infectivity, host specificity, and impacts on host physiology and metabolism are
needed to elucidate the role of viruses in bloom formation and termination and
subsequent impacts on diatom-mediated biogeochemical cycling. Characterizing the
genetic variability of diatom virus populations (e.g., rate of mutation per infection
event, genome recombination) may also shed light on the role and regulation of
diatom virus diversity. Critically lacking is a comparative transcriptomic, proteomic,
and metabolomic analysis during infection that would provide insight into the
molecular and biochemical mechanisms underlying the host response to infection,
as well as potentially identify diagnostic markers specific for infection. Given the
availability and widespread use of genetic transformation systems in both centric and
pennate model diatoms (Falciatore et al. 2020), adaptation of these techniques to
established diatom host-virus systems would further facilitate a mechanistic and
molecular understanding of diatom host-virus interactions.

Over the past two decades, ssDNA and ssRNA viruses that infect diatoms have
emerged as significant and diverse members of the viral community. However, the
large majority of diatom host-virus systems isolated to date are from Japan and all
are from the marine environment. Having additional systems from distinct geograph-
ical regions, as well as from different host genera, will be instrumental in determin-
ing how conserved host-virus interactions are within this globally dominant and
diverse group of phytoplankton (Malviya et al. 2016). Additional viral genome
sequences would also enrich the current reference dataset and improve our ability
to identify diatom viral signatures in metagenomic surveys, the latter of which would
be facilitated by focused sampling of the smaller size fraction (0.02–0.2 μm) on
oceanographic campaigns. High-throughput sequencing of targeted “viromes” is
already revealing the immense diversity of RNA viruses (Wolf et al. 2020) and,
when used quantitatively and in combination with metatranscriptomic analysis of
cell-associated viruses, can diagnose stages of infection in natural populations
(Kranzler et al. 2019, 2021). Additional methods for high-throughput, absolute
quantification of diatom viruses, taking advantage, for example, of commercially
available fluorescent dyes specific for ssDNA and ssRNA, and more powerful flow
cytometers and microscopes capable of detecting particles down to 20 nm would
provide an even broader view of the prevalence, pervasiveness, and distribution of
these viruses in the global ocean.

When metrics of infection are taken in context with biogeochemical and physio-
logical metrics, driving factors of infection itself can be elucidated (Kranzler et al.
2019). Combining this with network analyses of community sequence data to
identify specific host-virus interactions within a mixed community (Moniruzzaman
et al. 2017) sets the stage for further exploration of host specificity and mechanisms
of resistance across both space and time. Rapidly advancing single-cell technologies
applied in other algal systems have enabled the characterization of host-virus
interactions at an unprecedented scale (Rosenwasser et al. 2019; Ku et al. 2020).
These approaches will be useful in cultured diatom systems, as well as in natural
communities where the heterogeneity of host-virus interactions can be assessed
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across spatial and temporal gradients (Yoon et al. 2011; Martínez-García et al.
2014). Ultimately, parameterization of diatom host-virus interactions will be needed
to model the impact of viral-mediated mortality on diatom productivity. This has
been done in other host-virus systems (Record et al. 2016; Talmy et al. 2019;
Middelboe 2000; Thingstad 2000; Thamatrakoln et al. 2019; Demory et al. 2021),
but incorporation of viral-mediated losses into broader global ecosystem and bio-
geochemical models must account for the impact of diatom viruses given their role in
regulating one of the most globally dominant and ecologically relevant phytoplank-
ton groups in the modern ocean.

We have come a long way in the 16 years since the first diatom virus was reported
with the cultivation of numerous diatom host-virus systems, the sequencing of
diatom viral genomes, the characterization of lytic infection dynamics, and the
identification of environmental parameters that influence host-virus dynamics. We
have developed methods to detect and quantify diatom viruses in natural populations
and can diagnose different stages of infection. However, there is still much to learn.
How globally distributed are diatom viruses in the ocean? To what degree are diatom
populations infected? What are the consequences of viral infection on diatom-
mediated biogeochemical cycling and biological pump efficiency? Answers to
these questions and more are essential to our understanding of the impact viral
infection has on the flow of diatom organic carbon and associated matter in both the
modern and future oceans.
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